

Tuesday 06 October 2020 – Afternoon

A Level Chemistry A

H432/01 Periodic table, elements and physical chemistry

Time allowed: 2 hours 15 minutes

You must have:

. the Data Sheet for Chemistry A

You can use:

- · a scientific or graphical calculator
- an HB pencil

Please write clea	arty in bl	ack ink.	Do no	t writ	e in the barcodes.	
Centre number					Candidate number	
First name(s)						

INSTRUCTIONS

- Use black ink. You can use an HB pencil, but only for graphs and diagrams.
- Write your answer to each question in the space provided. If you need extra space use
 the lined pages at the end of this booklet. The question numbers must be clearly shown.
- · Answer all the questions.
- Where appropriate, your answer should be supported with working. Marks might be given for using a correct method, even if your answer is wrong.

INFORMATION

- · The total mark for this paper is 100.
- · The marks for each question are shown in brackets [].
- Quality of extended response will be assessed in questions marked with an asterisk (*).
- This document has 28 pages.

ADVICE

Read each question carefully before you start your answer.

Answer all the questions.

1 Several students titrate 25.00 cm³ of the same solution of sodium hydroxide, NaOH(aq) with hydroxhloric acid, HCI(aq).

One student obtains a smaller titre than the other students.

Which procedure explains the smaller titre?

- A The burette readings are taken from the top of the meniscus instead of the bottom of the meniscus. No change
- B The conical flask is rinsed with water before carrying out the titration. No owner some
- C An air bubble is released from the jet of the burette during the titration.
- The pipette is rinsed with water before filling with NaOH(aq). | aver the: were soluble NaOH so Your answer
- 2 Which statement gives the numerical value of the Avogadro constant?
 - A The number of moles in 12g of carbon-12,
 - B The number of electrons lost by 20.05g of calcium when it reacts with oxygen.
 - C The number of molecules in 16.0 g of oxygen.
 - D The number of atoms in 1 mole of chlorine molecules.

needed

Your answer

[1]

B:
$$\frac{20.05}{40} = 0.5 \text{ md} = 1 \text{ electron 103t}$$

 $(0.5 \times 2) \times 6.023 \times 10^{23} = N_A$

D: 2x6.023 x1023 = 1.204 x1024 atoms

© OCR 2020

3	0.80g of element X	is reacted with	0.40g of O.	to form an oxide with the formula X ₂ O ₃	

What is the identity of element X?

$$4x + 30_2 \rightarrow 2x_2O_3$$

- A Aluminium
 - Titanium 725M× wa
- 0.4 = 0.0125md 02

- C Germanium
- D Molybdenum

Your answer

$$\frac{0.8}{0.012} = 48 = Ti$$

4 Phosphoric acid is a tribasic acid.

What is the mass of Ca(OH)₂ that completely neutralises 100 cm³ of 0.100 mol dm⁻³ phosphoric acid?

- A 0.49g
- VXC
- $100 \times 10^{-3} \times 0.1 = 0.01 \text{ mod}$ $40 + ((16+1) \times 2) = 74$
- B 0.74g
 - 1.11g
- 0.01 x3 = 0.015 md (a(OH)2
- D 2.22g
- 0.015 x 74 = 1.11g

Your answer

[1]

- 5 Which statement about elements in the d block of Period 4 of the periodic table is correct?
 - A VCr atoms have the electron configuration: 1s22s22p63s23p63d54s1. Hurd's Ruse
 - Cu⁺ ions contain an incomplete 3d sub-shell. \s²2s²2ゃら3s²3ρら3よいかない。
 - € Fe²⁺ ions contain 3 unpaired electrons. \s² 2s² 2p⁶ 3s² 3e⁶ 3d⁶ 4s²
 - Sc forms ions with different oxidation states.

व्यक्तिचा प्राप्त 🗷

Your answer

stable so ion is so to term on ion

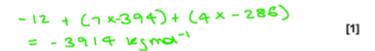
The equation for the combustion of C7H8 is shown in the following equation.

$$C_7H_8(I) + 9O_2(g) \rightarrow 7CO_2(g) + 4H_2O(I)$$

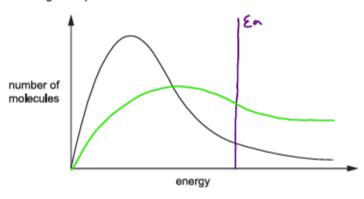
Enthalpy changes of formation are shown in the table.

Substance	C ₇ H ₈ (I)	CO ₂ (g)	H ₂ O(I)
$\Delta_f H/kJ \text{mol}^{-1}$	+12	-394	-286

 $exoxion(e) = -ve \Delta H_r$ Calculate the enthalpy of combustion, in kJ mol⁻¹, for the hydrocarbon C_7H_8 .


- -3914
- C7H8 + 902 → 7002 + 4H20
- -692

+12 1 7x-394 / / //4 x-286


+3914

+692

Your answer

The diagram represents a Boltzmann distribution curve of molecules at a given temperature.

Which statement for this Boltzmann distribution curve is correct at a higher temperature?

- The peak increases in height and moves to the left.
- The peak increases in height and moves to the right.
- The peak decreases in height and moves to the left.
- The peak decreases in height and moves to the right.

Your answer

[1]

A graph is plotted of ln(k) against 1/T. (k = rate constant, T = temperature in K)

The gradient has the numerical value of -55000.

What is the activation energy, in kJ mol-1?

$$\ln k = -\frac{\epsilon_0}{R} \left(\frac{1}{T}\right) + \ln A$$

$$y = m \times + C$$

+457

= 457.270 Kymol-1 [1]

The reversible reaction of nitrogen and hydrogen to form ammonia is shown below.

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

In the equilibrium mixture, the partial pressure of No is 18.75MPa and the partial pressure of Ho is 2.50 MPa.

The total pressure is 25 MPa.

What is the value of K_p, in MPa⁻²?

$$k_{p} = \frac{P(NH_{3})^{2}}{P(N_{2})P(H_{2})^{3}}$$

Your answer

[1]

10	The equation	for the	population	of ICA	and H.	is shown	hadow
10.7965	THE RESERVE THE PROPERTY OF THE PARTY OF THE	THE RESERVE	A TRANSPORT AND ADDRESS OF THE	Name of Street St.	ACRES FOR THE PARTY.	THOSE CONTRACTOR IN	PROGRAMMA AND A

What is the overall order of the reaction?

The rate constant k for this reaction is $1.63 \times 10^{-6} \,\mathrm{dm^3 mol^{-1} s^{-1}}$.

10xe = K [A][5]

[A][B] = K = madm=3 madm=3

Your answer

[1

11 20 cm³ of 0.10 mol dm⁻³ hydrochloric acid is added to 10 cm³ of 0.10 mol dm⁻³ sodium hydroxide.

What is the pH of the resulting mixture?

A 1.00

B 1.18

C 1.30

1.48

Your answer

12 lodide ions,
$$\Gamma(aq)$$
, react with $MnO_4^-(aq)$. The unbalanced equation is shown below. $\Gamma(aq) + MnO_4^-(aq) + H_2O(I) \rightarrow IO^-(aq) + MnO_2(s) + OH^-(aq)$

What is the ratio of MnO₂(s) to OH"(aq) in the balanced equation?

G 1:1

C 1:1

D 3:2

GE + 2MnOq +
$$AH_2O \rightarrow 2MnO_2 + {}^28OH^-$$

Your answer

C

3T + $COH^- \rightarrow 3TO^- + CMnO_2$

11

TO A 21:2

TO A 21:2

TO A 21:1

TO A 21:2

TO A 21:2

TO A 21:1

TO A 21:2

TO A 21:2

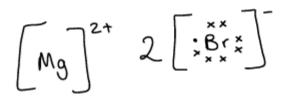
TO A 21:1

T

0.008,0000

13	Wh	nich st	tatement(s) is/are correct when a catalyst is added to a system in dynamic equilibri	ium?
		1	The rates of the forward and reverse reactions increase by the same amount. \checkmark	
		2	The concentrations of the reactants and products do not change.	
		3	The value of K_c increases. \times	+ D
	Α	1, 2	2 and 3	
	В	Onl	$V_{c} = \frac{CCCD}{CATCB}$ $V_{c} = \frac{CCCD}{CATCB}$	
	С	Onl	y 2 and 3 (A) (B)	
	D	Onl	y 1	
	You	ur ans	swer 8	[1]
14	Wh		tatement(s) for Group 2 elements is/are correct?	
		1	The 2nd ionisation energy of magnesium is greater than the 2nd ionisation encalcium.	ergy of
		2'	A strontium ion, Sr^{2+} , contains a total of S electrons in s orbitals. 1 S^2 S^2 S^2 S^3 S^3 S^4 S^3 S^4 $S^$	
	Α	1, 2	$Ba + 2H_2O \longrightarrow Ba(OH)_2 +$	H_2
	В	Onl	y 1 and 2	
	С	Onl	y 2 and 3	
	D	Onl	y 1	
	You	ur ans	swer D	[1]
			8	
15 \		0	tement(s) for the complex ion [Co(NH ₂ CH ₂ CH ₂ NH ₂) ₃] ²⁺ is/are correct? All same bidentate ligands so no cis and trans that the cis and trans isomers. X	
	2	2 It	t has optical isomers.	
	;	3 It	t is six-fold coordination.	
,	A	1, 2 a	24 6 1 315116	
E	3 (Only	1 and 2	
(0	Only 2	2 and 3	
[) (Only		
`	⁄our	answ	ver C	[1]

SECTION B


Answer all the questions.

- 16 This question is about magnesium, bromine and magnesium bromide.
 - (a) Relative atomic mass is defined as 'the weighted mean mass compared with 1/12th mass of carbon-12'.

Explain what is meant by the term weighted mean mass.

The mean taking into account the
relative abundancies at the isotepes
[1

(b) (i) Draw a 'dot-and-cross' diagram for MgBr₂. Con'C
Show outer electron shells only.

[2]

(ii) Calculate the total number of ions in 1.74 g of magnesium bromide, MgBr₂.
Give your answer to 3 significant figures.

$$\frac{1.74}{24.3 + (2 \times 79.9)} = 9.45 \times 10^{-3} \text{ mol}$$

$$24.3 + (2 \times 79.9) = 3 \text{ rank: Mg2*, Br}, Br}$$

$$9.45 \times 10^{-3} \times 3 = 0.0283 \text{ mol}$$

$$0.0283 \times 6.023 \times 10^{23} = 1.71 \times 10^{22} \text{ constant}$$

$$1.71 \times 10^{22} \text{ number of ions} = 1.71 \times 10^{22}$$

(c)* Table 16.1 shows some physical properties of magnesium, bromine and magnesium bromide.

Substance	Molting point/90	Electrical c	Electrical conductivity		
Substance	Melting point/°C	Solid	Liquid		
Magnesium	711	Good	Good		
Bromine	-7	Poor	Poor		
Magnesium bromide	650	Poor	Good		

Table 16.1

(d) The enthalpy change of hydration of bromide ions can be determined using the enthalpy changes in Table 16.2.

Enthalpy change	Energy/kJ mol ⁻¹
1st ionisation energy of magnesium	+736
2nd ionisation energy of magnesium	+1450
atomisation of bromine	+112
atomisation of magnesium	+148
electron affinity of bromine	-325
formation of magnesium bromide	-525
hydration of bromide ion	to be calculated
hydration of magnesium ion	-1926
solution of magnesium bromide	-186

Table 16.2

(i) An incomplete energy cycle based on Table 16.2 is shown below.

Mg2+(aq) + 2Br-(aq)

-186

(ii) Using your completed energy cycle in 16(d)(i), calculate the enthalpy change of hydration of bromide ions.

$$\frac{2}{1926 + (2 \times 325)} = 1450 - 736 - 148$$

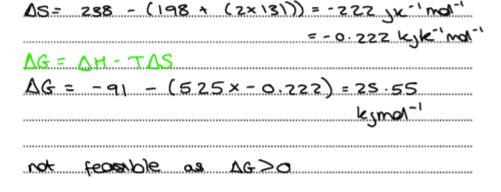
$$-(2 \times 112) = 525 - 186 = -693 \text{ kyral}^{-1}$$

$$-693 = -346.5 \text{ kyral}^{-1}$$

(iii) Write the equation for the lattice enthalpy of magnesium bromide and calculate the lattice enthalpy of magnesium bromide.

Equation Mg 24 (9) + 2Br (9) -> MgBr2 (5)

lattice enthalpy = ____2433_____kJ mol⁻¹ [3]


17		ethanol, CH ₃ OH, can be made industrially by the reaction of carbon mown in equilibrium 1.	nonoxide with hydrogen, as
	CO	$O(g) + 2H_2(g) \rightleftharpoons CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$	Equilibrium 1
	(a)	Predict the conditions of pressure and temperature that would give yield of CH ₃ OH in equilibrium 1.	4
		Explain your answer.	mant to
		Right hand side has four go	seons maei
		20 Nukly bussence	
		Forwards reaction was exothen	wic 20 10m
		temperature	
			[3]
	(b)) A catalyst is used in the production of methanol in equilibrium 1.	
		State two ways that the use of catalysts helps chemical companion more sustainable and less harmful to the environment.	es to make their processes
		1.lower erevey demond	
		2 less CO2 emissions	
			[2]

(c) Standard entropy values are given below.

Substance	CO(g)	H ₂ (g)	CH ₃ OH(g)
Sº/JK ⁻¹ mol ⁻¹	198	131	238

A chemist proposed producing methanol at 525 K using equilibrium 1.

Explain, with a calculation, whether the production of methanol is feasible at 525 K.

(d) At 298 K, the free energy change, ΔG, for the production of methanol in equilibrium 1 is -2.48 × 10⁴ J mol⁻¹.

 ΔG is linked to $K_{\rm p}$ by the relationship: $\Delta G = -RT \ln K_{\rm p}$.

$$lnkp = \frac{\Delta G}{-RT}$$

R = gas constant T = temperature in K.

Calculate Kp for equilibrium 1 at 298 K.

Give your answer to 3 significant figures.

kp = p(c0) x p(H2)2

18		s question is about reactions and uses of the weak acids methanoic acid, HCOOH, and anoic acid, CH ₃ COOH.
	(a)	A student adds magnesium metal to an aqueous solution of ethanoic acid, $\mathrm{CH_3COOH}.$ A redox reaction takes place.

Equation Mg + 2CH3COOH -> (CH3COO)2Mg + H2
Oxidation $M_{\mathbf{q}}: O \longrightarrow +2$
Reduction H: +\ → O

[3]

[2]

Write the overall equation for this reaction and explain, in terms of oxidation numbers, which

(b) The $K_{\rm a}$ values of HCOOH and CH $_{\rm 3}$ COOH are shown in Table 18.1.

ş,	Weak acid	K _a /mol dm ⁻³	PKa = PH	
₽Ġ.	HCOOH	1.82 × 10 ⁻⁴	3.74 pka = - 10910	Kα
ר [CH₃COOH	1.78 × 10 ⁻⁵	4.75	

Table 18.1

A student adds methanoic acid to ethanoic acid.

An equilibrium is set up containing two acid-base pairs.

Complete the equilibrium and label the conjugate acid-base pairs as A1, B1 and A2, B2.

HCOOH + CH₃COOH
$$\rightleftharpoons$$
 HCOO + CH₃COOH₂ + A1 B2 B1 A2

- (c) Use Table 18.1 to answer the following questions.
- (i) The student measures the pH of CH₃COOH(aq) as 2.72.

 Show that the concentration of the CH₃COOH(aq) is 0.204 mol dm⁻³.

 For [HA] = [CH₃(00H)]

$$[CH_{3}(OOH)] = \frac{(1.905 \times 10^{-3} \text{ moldm}^{-3} = [H^{+}]}{1.78 \times 10^{-5}} = 0.204 \text{ moldm}^{-3}$$

[2]

(ii) The student plans to make a buffer solution of pH4.00 from a mixture of CH₂COOH(aq) and sodium ethanoate, CH2COONa(aq).

The student mixes 400 cm3 of 0.204 mol dm-3 CH2COOH(aq) with 600 cm3 of CH₂COONa(aq).

Calculate the concentration of CH₂COONa(aq) needed to prepare this buffer solution of

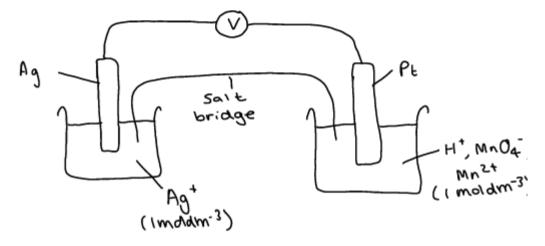
park [H+] buffer =
$$10^{-4} = 1 \times 10^{-4} \text{ mod m}^{-3}$$

= $400 \text{ cm}^3 = 0.4 \text{ dm}^3$
= $1000 \text{ cm}^3 = 1000 \text{ cm}^3$
= $1000 \text{ cm}^3 = 1000 \text{ cm}^3$
[H+] [A-] = $1000 \text{ cm}^3 = 1000 \text{ cm}^3$

$$= 1000 \text{ cm}^3$$

$$\begin{bmatrix}
 (H_3(00)^{-5}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (H_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-2}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-5} \times 8.16 \times 10^{-2}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-5} \times 8.16 \times 10^{-2}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1}) & = & [1 \times 10^{-4}] [cH_3(00)^{-1}] \\
 (A_3(00)^{-1})$$

opposite actions concentration =
$$2.4 \times 10^{-2}$$
 moldm⁻³ [4]


19 Standard electrode potentials for four redox systems are shown in Table 19.1.

Redox system	Half-equation	E*/V
1	$CO_2(g) + 2H^+(aq) + 2e^- \rightleftharpoons HCOOH(aq)$	-0.11
2	HCOOH(aq) + 2H ⁺ (aq) + 2e ⁻	-0.03
3	Ag⁺(aq) + e⁻ ⇌ Ag(s)	+0.80
4	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \iff Mn^{2+}(aq) + 4H_2O(I)$	+1.51

Table 19.1

(a) A student sets up a standard cell in the laboratory based on redox systems 3 and 4.

Draw a labelled diagram to show how this cell could be set up to measure its standard cell potential at $298\,\mathrm{K}$.

(b)	A student warms a mixture of methanal, HCHO, and acidified potassium manganate (VII).
	The student observes gas bubbles.
	Explain this observation in terms of electrode potentials and equilibria.
	Include overall equations in your answer. E OF NOOD SIRSTEM 4 is mare positive

E of rodox system 4 is more positive
than E of redox system 2 and 1
More negative systems 2 and 1 shift
lept
2 and 4:
2MnO4- + 8H+ + 50 ->2Mn2+ + 4H2O
5 H C H O + 5 H, O -> 10241+ + 205 +5HCOOH
2MnOx- + 6H+ + 5HCHO -> 2Mn2+ + 3H2O + 5HCOOH
1 and 4: 2MnOx + 6H++5H100H -> 2Mn2++8H2O+
1 and 4: $2MnOq^{-} + GH^{+} + SH(00H) \rightarrow 2Mn^{2+} + 8H_{2}O^{+}$ $2MnOq^{-} + 8H^{+} + 5e^{-} \rightarrow 2Mn^{2+} + 8H_{2}O^{2}$
5 H COOH -> 19 H + 20 +500 [4]
10.05

(c) Methanoic acid, HCOOH, can be used in a fuel cell. As with all fuel cells, the fuel (HCOOH) is supplied at one electrode and the oxidant (oxygen) at the other electrode.

The standard cell potential for this fuel cell is 1.34 V.

The overall reaction is shown below.

Using the information in **Table 19.1**, deduce the half-equation for the reaction at the oxygen electrode, and calculate the standard electrode potential for the oxygen half-cell.

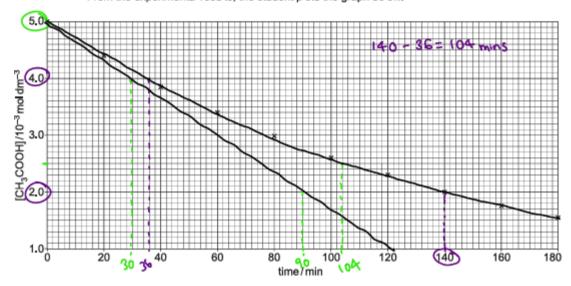
redax system 1:

2H+ + 1/202 + 2E -> H20

half-equation $2H^{+} + \frac{1}{2}O_{2} + 2e^{-} \longrightarrow H_{2}O$

standard electrode potential = +1...2.3... V

20 A student investigates the reaction between ethanoic acid, CH₃COOH(I) and methanol, CH₃OH(I), in the presence of an acid catalyst. The equation is shown below.


$$CH_3COOH(I) + CH_3OH(I) \rightleftharpoons CH_3COOCH_3(I) + H_2O(I)$$

(a) The student carries out an experiment to determine the order of reaction with respect to CH₃COOH.

The student uses a large excess of CH₃OH. The temperature is kept constant throughout the experiment.

The student takes a sample from the mixture every 20 minutes, and then determines the concentration of the ethanoic acid in each sample.

From the experimental results, the student plots the graph below.

- (i) Explain why the student uses a large excess of methanol in this experiment.
 - · To keep [CH3 OH] Constant
 - · Zero order with respect to CH3OH [1]
 - · TO ensure equilibrium is fair to the

(ii) Use the half-life of this reaction to show that the reaction is first order with respect to CH₃COOH.

Show your working on the graph and below.

Constants
$$\frac{1}{2}$$
 lines of 104 mins so first order [2]

(iii) Determine the initial rate of reaction.

(I) $k = \frac{\ln 2}{104} = 6.66 \times 10^{-3} \text{ min}^{-1}$
 $6.66 \times 10^{-3} \times 5 \times 10^{-3} = 3.33 \times 10^{-5} \text{ moldm}^{-3} \text{min}^{-1}$

(II) $\frac{(4-2) \times 10^{-3}}{90-30} = 3.33 \times (0^{-5} \text{moldm}^{-3} \text{min}^{-1})$

initial rate = $\frac{3.33 \times 10^{-5}}{100} \times \frac{100}{100} \times \frac{100}{100}$

(b) The student carries out a second experiment to determine the value of K, for this reaction.

The student mixes 9.6g of CH₃OH with 12.0g of CH₃COOH and adds the acid catalyst.

When the mixture reaches equilibrium, 0.030 mol of CH₃COOH rema

Calculate K_c for this equilibrium. $C_c = \frac{CH_3COCH_3[H_2O]}{CH_3CH_3[CH_3COOH]}$ mass $CH_3OH_3[CH_3COOH]$ mass $CH_$

$$\kappa_c = \frac{[0.17/V][0.17/V]}{[0.13/V][0.03/V]} = 7.4$$
 [4]

- 21 This question is about halogens.
 - (a) A student adds a solution of bromine in an organic solvent to two test tubes.

The student adds aqueous sodium chloride to one test tube, and aqueous sodium iodide to the other test tube.

The student shakes the mixtures, allows them to settle, and records the colour of the organic layer in each mixture.

Sodium halide	Colour of organic layer
Sodium chloride	orange
Sodium iodide	violet

Explain how the student's results provide evidence for the trend in reactivity of the halogens down group 17(7) and write an ionic equation for any reaction that takes place.

Use your chemical knowledge to explain the trend in reactivity.

overge contains bromine and no reachen
Videt Contains iodine
$Br_2 + 2T^- \longrightarrow 2Br^- + I_2$
Down the group:
- reachity decreases
- axidising power decreases / gains electrons les
easily / forms negative ion less cooky / less
energy releases ment because by ned more
nepowne decision attenty
grow / ellers grow / evibor simeta natagno -
shielding so less huclear attraction. [5]

(b)	Chlorine is used in water treatment.
	State one benefit and one risk of using chlorine in water treatment.
	Benefit Kulls backeria
	Risk taxic/ forms chlorinated hydrocarbons/
	forms courcinagenic compounds
	[1]
(c)	Compound A contains bromine and fluorine only, and has a boiling point of 41 °C.
	1.26g of compound A is heated to 80 °C. The volume of gas produced is 0.209 dm ³ .
	Under the conditions used, 1 mol of gas molecules has a volume of 29.0 dm ³ .
	Determine the molecular formula of compound A.
	0.209 = 0.00721 mol of A
	29 Similar to 24dm3 Br = 79.9
	equation: Not = vol (dm3) F = 19
	1. 26 = 174.8 RFM OF A 24
•	3.00721
	174.8-79.9 = 94.9
	94.9-79.9 = 15 - can't have more than one Br
	94.9 + 19 = 5
	molecular formula =Br.F.g[3]

22 (a)* B and C are compounds of two different transition elements.

A student carries out test tube reactions on aqueous solutions of ${\bf B}$ and ${\bf C}.$ The observations of the student's tests are shown below.

	Test	B(aq)	C(aq)
	NH ₃ (aq) added dropwise	green precipitate D	grey-green precipitate E
1	excess NH ₃ (aq) added	no further change	purple solution F
_	HNO ₃ (aq)	no change	no change
2	followed by Ba(NO ₃) ₂ (aq)	white precipitate G	no change
_	HNO ₃ (aq)	no change	no change
3	followed by AgNO ₃ (aq)	no change	white precipitate H

Analyse the results to identify B to H , and construct ionic equations for the formation of products D to H . [6]
B = FeSO4
Test 1: Fe ²⁺ present
Test 2: SO42- present
D = Fe (OH)2
G = BaSO4
C = Cr C(3
Test 1: Cr 3+ present
Test 3: C(- present
$E = Cr(OH)_3$
$F = \left(C_{V} \left(NH_{3} \right)_{6} \right)^{3+}$
H = AgCl
D: Fe2+ + 20H> Fe (OH),
E: $Cr(OH)_3 + 6NH_3 \rightarrow Cr(OH)_3$ F: $Cr(OH)_3 + 6NH_3 \rightarrow CCr(NH_3)_6 \int_3^{3+} +3OH_3$
G: Ba2+ + 5042> Ba504
H: Ag+ + Cl> AgCl

(b) A compound of nickel, J, has the formula (NH₄)₂[Ni(SCN)_x(NH₃)_y] and contains SCN⁻ and NH₃ ligands.

The percentage by mass of three of the elements in compound J is shown below: Ni, 16.26%; S, 35.56%; N, 31.00%.

(i) Calculate the values of x and y in the formula of compound J.

Ni : S: N	16.26 .	35.56	31.0	empirical
	58.7	32 . 1	14	Commo
1:4:8	= 0.277	= 1.11	= 2.21	caremonion
	0.277	0.277	0.277	l
		= 4	- 8	

=1 2+x+y=8

χ=	4
y =	2[3]

(ii) Determine the oxidation number of nickel in compound J.

(NH4)	[Ni(s	SCN) (NH3)	Γ.(
₹ ·	7	٩ '	23
+ 2	?=+2	ovidation number	Α.

(c) Sodium sulfite(IV), Na₂SO₃, is used as a preservative in some foods. Food safety legislation allows a maximum of 850 mg Na₂SO₃ per kg of burger meat.

A chemist determines the amount of Na2SO3 in a sample of burger meat using a manganate(VII) titration.

- Step 1 The Na₂SO₃ from 525g of burger meat is extracted to form a solution containing SO₃2-(aq) ions.
- Step 2 The solution from step 1 is made up to 250.0 cm³ in a volumetric flask with water. 25.0 cm³ of this diluted solution is pipetted into a conical flask.
- The pipetted solution from step 2 is acidified with dilute sulfuric acid and then Step 3 titrated with 0.0100 mol dm⁻³ potassium manganate(VII), KMnO₄.

$$2MnO_4^-(aq) + 6H^+(aq) + \frac{5SO_3^2^-(aq)}{} \rightarrow 2Mn^{2+}(aq) + 3H_2O(I) + 5SO_4^{2-}(aq)$$

12.60 cm3 of KMnO4(aq) is required to reach the endpoint.

Analyse the results to determine whether the burger meat complies with food safety legislation.

legislation.

$$0.01 \times 12.6 \times 10^{-3} = 1.26 \times 10^{-4} \text{ and}$$

$$\frac{1.26 \times 10^{-3}}{2} \times 5 = 3.15 \times 10^{-4} \text{ and } 50_3^{7-}; \text{ and } 50_3^{7-};$$

3.15 ×10-4 × 10 = 3.15 ×10-3 mer 5022-in 250cm3

$$\frac{3.(3810 - x)((25x2) + 32.11 + ((6x3)) = 0.30}{6} = 0.756.69 = 7.36.6mg$$

756.6 mg < 850 mg

ICSS when moximum permitted level