Electricity 001 answers		

In this resistor network, the emf of the supply is 12 V and it has negligible internal resistance.

What is the reading on a voltmeter connected between points X and Y?

A 0 V

1

0

(B) v

0

C 3 V

0

0

D 4 V

y = 1 ×12 = 3 V

(Total 1 mark)

The diagram shows a network of resistors connected between the terminals **P** and **Q**.

The resistance of each resistor is shown.

What is the effective resistance between P and Q?

 \mathbf{A} R

B 2*R*

C 3*R*

D 4*R*

(Total 1 mark)

The circuit diagram below shows a battery of electromotive force (emf) 12 V and internal resistance 1.5 Ω connected to a 2.0 Ω resistor in parallel with an unknown resistor, R. The battery supplies a current of 4.2 A.

(a) (i) Show that the potential difference (pd) across the internal resistance is 6.3 V.

V=IR=> V= 4.2×1.5= 6.30

(1)

(ii) Calculate the pd across the 2.0 Ω resistor.

$$12 - 6.3 = 5.7 V$$

pd ______V

(1)

(iii) Calculate the current in the 2.0 Ω resistor.

(iv) Determine the current in R.

$$4.2 - 2.85 = 1.35$$
current 1.4 A

(v) Calculate the resistance of R.

(vi) Calculate the total resistance of the circuit.

- (b) The battery converts chemical energy into electrical energy that is then dissipated in the internal resistance and the two external resistors.
 - (i) Using appropriate data values that you have calculated, complete the following table by calculating the rate of energy dissipation in each resistor.

resistor	rate of energy dissipation / W
internal resistance	4.2 × 1.5 = 26.5
2.0 Ω	2.852 × 2 = 16-2
R	1.352×4.2 = 7.7

$$= 50.4 \text{ W}$$
 (3)

(1)

(1)

(1)

(2)

(ii)	Hence show that energy is conserved in the	he circuit.
	Battery supplies	12V at 42A = 50.4
	Total = 50.4	

(2)

(Total 12 marks)

The circuit diagram below shows a 6.0 V battery of negligible internal resistance connected in series to a light dependent resistor (LDR), a variable resistor and a fixed resistor, R.

(a) For a particular light intensity the resistance of the LDR is 50 k Ω . The resistance of R is 5.0 k Ω and the variable resistor is set to a value of 35 k Ω .

(2)

(ii) Calculate the reading on the voltmeter.

4

 $V = I R \Rightarrow (R \times 10^{-5} \times 5000)$ voltmeter reading 0.3

(2)

State and explain what happens to the reading on the voltmeter if the intensity of the light (b) incident on the LDR increases. (2) (c) For a certain application at a particular light intensity the pd across R needs to be 0.75 V. The resistance of the LDR at this intensity is $5.0 \text{ k}\Omega$. Calculate the required resistance of the variable resistor in this situation. I = V, = 0,75/500 = 1.5×10-4A resistance (3) (Total 9 marks) Voltage over top also 0.75 V ... Vallvoss variable = 6-(2x0.75) = 4.5 U V=R=> 4.5 1.5~10-4= 30KJL

Mark schemes

1 B

[1]

2 B

[1]

(a) (i) (use of V=Ir) $V = 4.2 \times 1.5 \checkmark = 6.3 (V)$

1

(ii) pd = $12 - 6.3 = 5.7 \text{ V} \checkmark$ NO CE from (i)

1

(iii) (use of I = V/R) $I = 5.7 / 2.0 = 2.8(5) \text{ A} \checkmark$ CE from (ii) (a(ii)/2.0)accept 2.8 or 2.9

1

(iv) $I = 4.2 - 2.85 = 1.3(5) \text{ A} \checkmark$ CE from (iii) (4.2 - (a)(iii))accept 1.3 or 1.4

1

(v) $R= 5.7 / 1.35 = 4.2 \Omega \checkmark$ $CE \ from \ (iv)$ (a(ii) / (a)(iv)) $Accept \ range \ 4.4 \ to \ 4.1$

1

(vi) $\frac{1}{R_{Parallel}} = \frac{1}{4.2} + \frac{1}{2.0} = 0.737$

CE from (a)(v)

 $R_{parallel} = 1.35 \ \Omega$

second mark for adding internal resistance

 $R_{total} = 1.35 + 1.5 \checkmark = 2.85 \Omega$ OR R = 12/4.2 \checkmark R= 2.85 Ω \checkmark

2

(b) (i)

resistor	Rate of energy dissipation (W)
1.5 Ω internal resistance	$4.2^{2} \times 1.5 = 26.5 \checkmark$
2.0 Ω	2.85 ² × 2.0 = 16.2 (15.68 − 16.82)√
R	1.35 ² × 4.2 = 7.7 (7.1 − 8.2)√

CE from answers in (a) but not for first value

2.0: a(iii)²x2

 $R: a(iv)^2 \times a(v)$

(ii) energy provided by cell per second = 12 x 4.2 = 50.4 (W) ✓ energy dissipated in resistors per second = 26.5 + 16.2 + 7.7 = 50.4 ✓ (hence energy input per second equals energy output)

if not equal can score second mark if an appropriate comment

[12]

3

2

(a) (i) (use of I = V/R)

first mark for adding resistance values 90 k Ω

I = 6.0 / (50 000 + 35 000 + 5000)
$$\checkmark$$
 = 6.7 × 10⁻⁵A \checkmark accept 7 × 10⁻⁵ or dotted 6 × 10⁻⁵ but not 7.0 × 10⁻⁵ and not 6.6 × 10⁻⁵

2

(ii) $V = 6.7 \times 10^{-5} \times 5000 \checkmark = 0.33 (0.33 - 0.35) V \checkmark$ OR $V = 5 / 90 \times 6 \checkmark = 0.33 (V) \checkmark$ CE from (i)

BALD answer full credit

0.3 OK and dotted 0.3

2

(b) resistance of LDR decreases ✓

need first mark before can qualify for second

reading increase because greater <u>proportion / share</u> of the voltage across R OR higher current ✓

2

```
(c) I = 0.75 / 5000 = 1.5 \times 10^{-4} \text{ (A)} \checkmark (pd across LDR = 0.75 (V)) pd across variable resistor = 6.0 - 0.75 - 0.75 = 4.5 \text{ (V)} \checkmark R = 4.5 / 1.5 \times 10^{-4} = 30\ 000\ \Omega \checkmark or I = 0.75 / 5000 = 1.5 \times 10^{-4} \text{ (A)} \checkmark R_{\text{total}}I = 6.0 / 1.5 \times 10^{-4} = 40\ 000\ \Omega \checkmark R = 40\ 000\ - 5000\ - 5000\ = 30\ 000\ \Omega \checkmark
```

[9]

3