ANSWERS & MARK SCHEMES

QUESTIONSHEET 1

(a)	Pig Number	1	2	3	4	5	6	7	8	9	10	11
	B- A Weight difference(x)	+ 1.5	+ 0.5	+ 3.8	+ 5.2	+ 3.7	+ 1.0	- 6.0	- 4.5	- 3.5	+ 1.1	+ 0.3
	x ²	2.25	0.25	14.44	27.04	13.69	1.0	36.0	20.25	12.25	1.21	0.09

mark for correct differences (must show negatives);
 mark for correct squared values;

- (b) (i) $\bar{x}^2 = 0.0794$; (add B-A, divide by 11, then square) $\Sigma x^2 = 128.47$; (allow 128.5)
 - (ii) $s^2 = \frac{128.47}{11} 0.0794 = 11.6$; s = 3.406; (allow 3.41)
 - (iii) $t = \frac{0.28\sqrt{11-1}}{3.406}$; = 0.26;
 - (iv) accept the null hypothesis; calculated value is less than critical value;
- (c) (i) anaemia is a lack of haemoglobin/red blood cells;
 thus ability of blood to transport oxygen/carbon dioxide is impaired;
 thus less available energy/ATP for protein synthesis/cellular respiration may be slowed up;
 - (ii) by injection (since dietary supplement has no significant effect);

2

2

2

2

2

2

A2.19

STATISTICS FOR BIOLOGY

ANSWERS & MARK SCHEMES

QUESTIONSHEET 2

classes

Class (5 lbs)	No of pigs
0 - 4	1
5 - 9	1
10 - 14	4
15 - 19	10
20 - 24	12
25 - 29	17
30 - 34	24
35 - 39	13
40 - 44	11
45 - 49	5

correct numbers of pigs written in table; axes correctly labelled including class details; suitable scale; accurate plotting; blocks drawn clearly/tidily;

- (ii) normal/top hat distribution/slightly skewed to the right;
- (iii) $\frac{2890}{98}$; = 29.49;
- (b) Directional (accept other direction)

3 correctly drawn curves;;; 3 means;;;

Stabilising (must be narrower than orginal)

Disruptive

5

1

ANSWERS & MARK SCHEMES

(a)(i)

QUESTIONSHEET 3

	Correct	Incorrect
Nose closed	139.5;	60.5 ;
Nose open	139.5 ;	60.5 ;

(ii)	$\chi^2 = (\underline{167 - 139.5})^2 +$	$(33 - 60.5)^2 +$	$\underline{(112-139.5)^2} \ +$	$(88 - 60.5)^2$
	139.5	60.5	139.5	60.5

	= 5.421 + 12.50 + 5.421 + 12.50 ; (allow mark here or in correct substitution above) χ^2 = 35.84 ;	2
(iii)	n = 1;	1
(iv)	accept the hypothesis/effect of nasal breathing is important:	•
(1)	since calculated value of Chi ² is much higher than critical value;	2
(b) (i)	mouths should be rinsed out with water before each test; cinnamon infusion should be of same concentration throughout test/concentrated enough to taste; test subjects should not have colds/nasal congestion/be the same age/sex; test subjects should not eat for a few hours prior to the test (so that residual tastes do not interfere with the test); ma	nx 3

(ii) many substances to be tasted give off volatile chemicals;
 which can depolarise/be sensed by/stimulate the olfactory/smell receptors in the nasal mucosa/lining;
 thus adding to the effect of the chemical depolarising/stimulating the taste buds on the tongue;

TOTAL 15

3

QUESTIONSHEET 4

(a) (i)		Number	of plants		
		Green	White		
	0	49	18		
	Е	50.25;	16.75;		2
(ii)	$\chi^2 = 0.$	$\frac{(49-50.3)}{50.25}$	$(18)^2 + (18)^2$	<u>- 16.75)</u> ² ; 6.75	
	(allo	w the worki	ng mark at an	y correct stage in the calculation)	2
(iii)	n = 1	;			1
(iv)	rejec calcu	t the hypoth lated value	esis/deviation of χ^2 is less	from ratio is not significant; han critical value (at 0.05 probability level);	2
(b) suita	ble sy P gam F ₁	mbols, eg. G G tetes (G) (GG	$\begin{array}{ccc} G \text{ for green, g} \\ g & G \\ \hline g & G \\ \hline Gg & Gg \\ \hline & Gg$	for white; no mark) g); gg ;	
			3 green	1 white ;	4
					TOTAL 11

ANSWERS & MARK SCHEMES

QUESTIONSHEET 5

(i)	plant	gold accumulated/n	ng gold Kg ⁻¹ dry mass	x = b - a	x ²
		no thiocyanate(a)	with thiocyanate(b)		
	1	1.01	0.99	-0.02	0.0004
	2	1.09	1.09	0	0.0000
	3	0.98	1.25	0.27	0.0729
	4	0.71	1.34	0.63	0.3969
	5	1.15	1.22	0.07	0.0049
	6	1.21	1.18	-0.03	0.0009
	7	1.18	1.23	0.05	0.0025
	8	0.89	1.34	0.45	0.2025
	9	1.26	1.21	-0.05	0.0025
	10	1.07	0.97	-0.1	0.0100
	11	1.30	1.18	-0.12	0.0144
	12	1.17	1.23	0.06	0.0036
		1	1		

x values; $\sum x = 1.21;$ $\overline{x} = \frac{1.21}{12} = 0.101;$

(ii)
$$\mathbf{x}^2$$
 values;
 $\Sigma \mathbf{x}^2 = 1.464$;

(iii) $(\bar{\mathbf{x}})^2 = 0.010(2);$

(iv)
$$\mathbf{s}^2 = \frac{1.464}{12} - 0.010 = 0.112$$
;
 $\mathbf{s} = 0.335$;

(v)
$$\mathbf{t} = \frac{0.101\sqrt{12-1}}{0.335}$$
; = 1.00; (allow 0.999)

(b) (i) accept the null hypothesis; calculated value is less than the critical value (at 0.05 probability level/at all probability levels shown);

 (ii) use same strain/seed batch/similar Brassica seedlings; mine waste material should have identical gold contents to begin with; use a standard concentration of thiocyanate; grow under similar conditions of temperature/humidity/water availability;

TOTAL 14

3

2

1

2

2

ANSWERS & MARK SCHEMES

QUESTIONSHEET 6

(a) the colours of the seeds produced are not in the ratio 5:4:4:2;

(b)	Colour of flower	Red	White	Yellow	Pink	
	Working	$\frac{5 \times 60}{15}$	4 × 60 15	<u>4 × 60</u> <u>15</u>	$\frac{2 \times 60}{15}$	
	Expected numbers	20	16	16	8	

correct working ;

correct answers;

(c)
$$\chi^2 = \frac{(15-20)^2}{20} + \frac{(20-16)^2}{16} + \frac{(10-16)^2}{16} + \frac{(15-8)^2}{8}$$
; (allow for any correct stage of working)

 $\chi^2 = 10.625;$

(d) 3:

- (e) accept the null hypothesis/colours are not distributed in stated ratio; calculated value of χ^2 is more than the critical value;
- (f) heterozygous;
 - blending inheritance/incomplete dominance; allele for red interacts with allele for white (producing pink);

QUESTIONSHEET 7

(a) 70% of dandruff sufferers will be able to clear up their dandruff with one application of the shampoo;	1
(b) $200 - (6.156 + 26.46 + 72.03 + 33.614)$; = 61.74;	2
(c) $\chi^2 = \frac{(15 - 6.156)^2}{6.156} + \frac{(24 - 26.46)^2}{26.46} + \frac{(57 - 61.74)^2}{61.74} + \frac{(75 - 72.03)^2}{72.03} + \frac{(29 - 33.614)^2}{33.614}$; (allow working mark at any correct stage of calculation)	
=(12.706 + 0.229 + 0.364 + 0.122 + 0.633) = 14.054;	2
(d) 4; (column 0 has to be amalgamated with column 1)	1
(e) accept the hypothesis/the manufacturers claim is correct; since calculated value of χ^2 is higher than the critical value;	2
	TOTAL 8

2

2

1

2

max 2

TOTAL 10

ANSWERS & MARK SCHEMES

QUESTIONSHEET 8

(a) the mean height of year 8 pupils at the teacher's school is less than 1.53 metres;

(b)(i)

Pupil Number	1	2	3	4	5	6	7	8	9	10
Height difference/m	- 0.03	+ 0.04	- 0.04	- 0.07	0	+ 0.09	0	- 0.02	+ 0.04	- 0.09

1 mark for + or - signs; 1 mark for figures;

(ii) $\Sigma \mathbf{x} = -0.08$; $\overline{\mathbf{x}} = -0.008$; $\overline{\mathbf{x}}^2 = 0.000064$; $\Sigma \mathbf{x}^2 = 0.0272$;	4
(iii) $\mathbf{s}^2 = \frac{0.0272}{10} - 0.000064 = 0.002656;$	
$\mathbf{s} = 0.0515363$;	2
(iv) $\mathbf{t} = \frac{0.008\sqrt{10-1}}{0.0515363}$; = 0.466;	2
(v) 9;	1
(c) reject the hypothesis/the teacher is not correct;calculated value is less than the critical value;	2

TOTAL 14

1

ANSWERS & MARK SCHEMES

QUESTIONSHEET 9

correct graph;

shows discontinuous variation/bimodal distribution;

Height/metres

tall and short peas in the ratio of three to one/ref to monohybrid inheritance;

ANSWERS & MARK SCHEMES

-36

1296

QUESTIONSHEET 10

()									
(11)	Phenotype	Observed	Expected	(O – E)	$(\mathbf{O} - \mathbf{E})^2$				
	Grey winged	180	145;	35	1225				
	Black vestigial	52	16;	36	1296				
	Grey vestigial	14	48;	-34	1156				

48;

(a) (i) the inherited characteristics do not behave in a Mendelian manner;

12

(O - E) all correct;

Black wild

 $(O - E)^2$ all correct;

(iii)
$$\chi^2 = \frac{1225}{145} + \frac{1296}{16} + \frac{1156}{48} + \frac{1296}{48}$$
;

= (8.45 + 81 + 24.08 + 27) = 140.53;(allow the working mark at any correct stage in the calculation)

(iv) 3;

(v) reject the null hypothesis/results are not a Mendelian ratio; calculated value is more than the critical value;

(b) the characteristics are linked;

grey to winged and black to vestigial wings; alleles on the same (homologous pair of)chromosomes; ref to recombinants produced by chiasma formation/crossover;

TOTAL 15

2

6

2

1

1

max 3

ANSWERS & MARK SCHEMES

1

4

QUESTIONSHEET 11

(a) dandelion and ribwort do not tend to grow in association with each other in the meadow;

(b) (i)

			Da			
		present		absent		row total
Ribwort	present	O E	88 86.8;	O E	52 53.2;	140
	absent	O E	36 37.2;	O E	24 22.8;	60
	column total		124		76	200 (grand total)

(ii)
$$\chi^2 = \frac{(88-86.8)^2}{86.8} + \frac{(52-53.2)^2}{53.2} + \frac{(36-37.2)^2}{37.2} + \frac{(24-22.8)^2}{22.8}$$
;
= (0.0166 + 0.0271 + 0.0387 + 0.0632)
= 0.1456;
(iii) 1; 1
(iv) accept the null hypothesis/there is no association between the two plants;
calculated value is smaller than the critical value; 2
TOTAL 10

A2.19

STATISTICS FOR BIOLOGY

ANSWERS & MARK SCHEMES

5

QUESTIONSHEET 12

 (a) (i) correct labelled axes; suitable scale; accurate plotting; points joined with a straight line; (IOB recommendations) curves labelled;

(ii) area A;

the data is much more variable in A (than in B);

thus A would need many samples to get an accurate estimation of the mean/only a few samples in B would give an accurate estimation of the mean; 3

(iii)	the time available for the investigation;				
	the time required to obtain each sample;				
	the ease with which each sample can be collected/many small plants more difficult to count than a few large plants;	ollected/many small plants more difficult to count than a few large plants;			
	how much damage/disturbance the sampling may cause/trampling/crushing of delicate/rare plants; ma	1x 2			

		TOTAL 16
(iii)	Chi ² ; used to test <u>association</u> between factors/light intensity and bluebell distribution;	2
(ii)	t-test; used to test the <u>significance of differences in the means</u> of two (or more) sets of data;	2
(b) (i)	Chi ² ; used to test <u>'goodness of fit'</u> of genetical data to Mendelian/linkage/expected ratios;	2

(Current syllabuses only specify t-test and Chi² test for possible exam use)