Solving Differential Equations Difficulty: Medium

Model Answers 2

Time allowed:

47 minutes

Score:

/39

Percentage:

/100

Grade Boundaries:

A*	Α	В	С	D	E	U
>76%	61%	52%	42%	33%	23%	<23%

Question 1

A population growth is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP \; ,$$

where P is the population, t is the time measured in days and k is a positive constant.

Given that the initial population is P_0 ,

(a) solve the differential equation, giving P in terms of P_0 , k and t.

(4)

$$\frac{dP}{dt} = kP$$
, when $t = 0, P = P_0$

Rearrange by separating the variables,

$$\int \frac{dP}{P} = \int k \, dt$$

$$ln P = kt + c$$

Plug in the known values

$$ln P_0 = k(0) + c$$

So we can say:

$$ln P = kt + ln P_0$$

Rearrange this for P using log rules

$$e^{\ln P} = e^{kt + \ln P_0} = e^{kt}e^{\ln P_0}$$

Hence
$$P = P_0 e^{kt}$$

Given also that k = 2.5,

(b) find the time taken, to the nearest minute, for the population to reach $2P_0$.

(3)

Here we plug in the given values and rearrange for t

$$(2P_0) = P_0 e^{2.5t}$$

$$2 = e^{2.5t}$$

$$ln 2 = ln(e^{2.5t}) = 2.5t$$

Hence

$$t = \frac{1}{2.5} \ln 2 = 0.277 \ days$$

In minutes this is $0.277 \times 24 \times 60 = 399$ minutes

In an improved model the differential equation is given as

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \lambda P \cos \lambda t \;,$$

where P is the population, t is the time measured in days and λ is a positive constant.

Given, again, that the initial population is P_0 and that time is measured in days,

(c) solve the second differential equation, giving P in terms of P_0 , λ and t.

(4)

Similar to part a we must rearrange this and then integrate.

$$\int \frac{dP}{P} = \lambda \int dt \cos \lambda t$$

$$ln P = \frac{\lambda}{\lambda} \sin \lambda t + c = \sin \lambda t + c$$

Plug in the known values→

$$ln P_0 = sin(0) + c$$

Hence

$$ln P = \sin \lambda t + ln P_0$$

Rearrange for P using exponentials

$$e^{\ln P} = e^{\sin \lambda t + \ln P_0} = e^{\sin \lambda t} e^{\ln P_0}$$

Therefore $P = P_0 e^{\sin \lambda t}$

Given also that $\lambda = 2.5$,

(d) find the time taken, to the nearest minute, for the population to reach $2P_0$ for the first time, using the improved model.

(3)

We now do the same as before with the improved model.

$$P = 2P_0, \lambda = 2.5$$

$$2P_0 = P_0 e^{\sin 2.5t}$$

$$e^{\sin 2.5t} = 2$$

Use logarithms to rearrange for t→

$$ln e^{\sin 2.5t} = ln 2$$

$$sin 2.5t = ln 2$$

$$t = \frac{1}{2.5} sin^{-1} (ln 2) = 0.306 \dots days$$

$$t = 0.306 ... \times 24 \times 60 = 441$$
 minutes.

(Total 14 marks)

Question 2

(a) Express
$$\frac{5}{(x-1)(3x+2)}$$
 in partial fractions.
$$\frac{5}{(x-1)(3x+2)} = \frac{A}{x-1} + \frac{B}{3x+2}$$

$$=\frac{A(3x+2)+B(x-1)}{(x-1)(3x+2)}$$

$$\Rightarrow A(3x+2) + B(x-1) = 5$$

Using elimination:

x = 1 gives:

$$A(3+2) + B(1-1) = 5$$

$$5A = 5$$

A = 1

x = -3/2 gives:

$$1\left(-\frac{9}{2}+2\right) + B\left(-\frac{3}{2}-1\right) = 5$$

$$-\frac{5}{2} - \frac{5}{2}B = 5$$

$$-\frac{5}{2}B = \frac{15}{2}$$

$$B = -3$$

$$\Rightarrow \frac{5}{(x-1)(3x+2)} = \frac{1}{x-1} - \frac{3}{3x+2}$$

(b) Hence find
$$\int \frac{5}{(x-1)(3x+2)} dx$$
, where $x > 1$.

$$\int \frac{5}{(x-1)(3x+2)} dx = \int \frac{1}{x-1} dx - \int \frac{3}{3x+2} dx = .$$
 Using part a)

$$= \ln |x-1| - \ln |3x+2| + C$$
 where C is constant of integration

(c) Find the particular solution of the differential equation

$$(x-1)(3x+2)\frac{dy}{dx} = 5y, \quad x > 1,$$

for which y = 8 at x = 2. Give your answer in the form y = f(x). $(x - 1)(3x + 2)\frac{dy}{dx} = 5y$

Using the techniques of separation of variables, dividing LHS by y and RHS by (x-1)(3x+2)

$$\int \frac{1}{y} dy = \int \frac{5}{(x-1)(3x+2)} dx$$

Integrating on each side gives

$$\ln|y| = \ln\left|\frac{x-1}{3x+2}\right| + \ln(k)$$
 where k is constant of integration

$$y = \frac{k(x-1)}{3x+2}$$

$$8 = \frac{k}{8}$$
 using (2,8)

$$y = \frac{64(x-1)}{3x+2}$$
 (Total 12 marks)

Question 3

(a) Express $\frac{2}{P(P-2)}$ in partial fractions.

A team of biologists is studying a population of a particular species of animal.

The population is modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{2}P(P-2)\cos 2t, t \ge 0$$

where P is the population in thousands, and t is the time measured in years since the start of the study.

Given that
$$P = 3$$
 when $t = 0$, (3)

$$\frac{2}{P(P-2)}$$

Express as a sum of fractions over the denominators

$$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{P-2}$$

Multiply both sides by P(P-2)

$$2 = \frac{A(P)(P-2)}{P} + \frac{B(P)(P-2)}{P-2}$$
$$2 \equiv A(P-2) + B(P)$$

Set P = 0 to eliminate B

$$2 \equiv A((0) - 2) + B(0)$$
$$2 \equiv -2A$$

Divide both sides by -2

$$A = -1$$

Set P = 2 to eliminate A

$$2 \equiv A((2) - 2) + B(2)$$
$$2 \equiv 2B$$

Divide both sides by 2

B = 1

Substitute these back into the original equation

$$\frac{2}{P(P-2)} = \frac{A}{P} + \frac{B}{P-2}$$

$$\frac{2}{P(P-2)} = -\frac{1}{P} + \frac{1}{P-2} = \frac{1}{P-2} - \frac{1}{P}$$

(b) solve this differential equation to show that

$$P = \frac{6}{3 - e^{\frac{1}{2}\sin 2t}} \tag{7}$$

$$\frac{dP}{dt} = \frac{1}{2}P(P-2)\cos 2t$$

Separate the variables and integrate both sides for

$$\int \frac{2}{P(P-2)} dP = \int \cos 2t \ dt$$

Substitute $\frac{2}{P(P-2)} = \frac{1}{P-2} - \frac{1}{P}$, from a), into the first integral

$$\int \frac{1}{P-2} - \frac{1}{P} dP = \int \cos 2t dt$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b|$$

$$\int \cos ax \ dx = \frac{1}{a} \sin ax$$

$$\frac{dP}{dt} = \frac{1}{2}P(P-2)\cos 2t$$

Separate the variables and integrate both sides for

$$\int \frac{2}{P(P-2)} dP = \int \cos 2t \ dt$$

Substitute $\frac{2}{P(P-2)} = \frac{1}{P-2} - \frac{1}{P}$, from a), into the first integral

$$\int \frac{1}{P-2} - \frac{1}{P} dP = \int \cos 2t dt$$

$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b|$$

$$\int \cos ax \ dx = \frac{1}{a} \sin ax$$

remembering the +C

$$\ln|P - 2| - \ln|P| = \frac{1}{2}\sin 2t + C$$

(c) find the time taken for the population to reach 4000 for the first time. Give your answer in years to 3 significant figures.

(3)

$$P = 4$$

Substitute this into $\ln \left| \frac{3 \times (P-2)}{P} \right| = \frac{1}{2} \sin 2t$, found in the previous part, as it is the easiest equation to find t from

$$\ln \left| \frac{3 \times ((4) - 2)}{(4)} \right| = \frac{1}{2} \sin 2t$$

$$\ln\left|\frac{6}{4}\right| = \frac{1}{2}\sin 2t$$

Multiply both sides by 2

$$\sin 2t = 2\ln\frac{6}{4}$$

 $\frac{6}{4} = \frac{3}{2}$, and do \sin^{-1} on both sides

$$2t = \sin^{-1}\left(2\ln\frac{3}{2}\right)$$

Divide both sides by 2

$$t = \frac{1}{2}\sin^{-1}\left(2\ln\frac{3}{2}\right)$$

Calculate the answer, making sure the calculator is in radians

$$t = 0.47287...$$

(Total 13 marks)